Data - Aware Workflow Scheduling in Heterogeneous Distributed Systems
نویسندگان
چکیده
Data transferring in scientific workflows gradually attracts more attention due to large amounts of data generated by complex scientific workflows will significantly increase the turnaround time of the whole workflow. It is almost impossible to make an optimal or approximate optimal scheduling for the end-to-end workflow without considering the intermediate data movement. In order to reduce the complexity of the workflow-scheduling problem, most researches done so far are constrained by many unrealistic assumptions, which result in non-optimal scheduling in practice. A constraint imposed by most researchers in their algorithms is that a computation site can only start the execution of other tasks after it has completed the execution of the current task and delivered the data generated by this task. We relax this constraint and allow overlap of execution and data movement in order to improve the parallelism of the tasks in the workflow. Furthermore, we generalize the conventional workflow to allow data to be staged in(out) from(to) remote data centers, design and implement an efficient data-aware scheduling strategy. The experimental results show that the turnaround time is reduced significantly in heterogeneous distributed systems by applying our scheduling strategy. To reduce the end-to-end workflow turnaround time, it is crucial to deliver the input, output and intermediate data as fast as possible. However, it is quite often that the throughput is much lower than expected while using single TCP stream to transfer data when the bandwidth of the network is not fully utilized. Multiple TCP streams will benefit the throughput. However, the throughput does not increase monotonically when increasing the number of parallel streams. Based on this observation, we propose to improve the existing throughput prediction models, design and implement a TCP throughput estimation and optimization service in the distributed systems to figure out the optimal configurations of TCP parallel streams. Experimental results show that the proposed estimation and optimization service can predict the throughput dynamically with high accuracy and the throughput can be increased significantly. Throughput optimization along with data-aware workflow scheduling allows us to minimize the end-to-end workflow turnaround time successfully.
منابع مشابه
Incorporating Energy-Aware Mechanism into Workflow Scheduling Policy in Heterogeneous Distributed Systems
In the past decades, plenty scheduling policies have been proposed for improving the execution performance of workflow applications. However, few of them have addressed the issue of energy conservation. In this paper, a novel scheduling metric, namely Minimal Energy Consumption Path, is introduced to reducing the energy consumption when scheduling large-scale workflows. The proposed scheduling ...
متن کاملA new Shuffled Genetic-based Task Scheduling Algorithm in Heterogeneous Distributed Systems
Distributed systems such as Grid- and Cloud Computing provision web services to their users in all of the world. One of the most important concerns which service providers encounter is to handle total cost of ownership (TCO). The large part of TCO is related to power consumption due to inefficient resource management. Task scheduling module as a key component can has drastic impact on both user...
متن کاملDynamic configuration and collaborative scheduling in supply chains based on scalable multi-agent architecture
Due to diversified and frequently changing demands from customers, technological advances and global competition, manufacturers rely on collaboration with their business partners to share costs, risks and expertise. How to take advantage of advancement of technologies to effectively support operations and create competitive advantage is critical for manufacturers to survive. To respond to these...
متن کاملGreen Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملMulti-objective and Scalable Heuristic Algorithm for Workflow Task Scheduling in Utility Grids
To use services transparently in a distributed environment, the Utility Grids develop a cyber-infrastructure. The parameters of the Quality of Service such as the allocation-cost and makespan have to be dealt with in order to schedule workflow application tasks in the Utility Grids. Optimization of both target parameters above is a challenge in a distributed environment and may conflict one an...
متن کامل